113 Class Problems: Polynomials and Fields of Fractions

1. (a) Find all the units in $\mathbb{Z} / 5 \mathbb{Z}[x]$. What do you notice about them?
(b) Give an example of a non-constant polynomial in $\mathbb{Z} / 4 \mathbb{Z}[x]$ which is a unit. What is the difference between this case and part (a).
Solutions:
a) $\mathbb{Z} / \mathbb{\mathbb { Z }}$ a Held $\Rightarrow \mathbb{Z} / S \mathbb{Z}[x]$ I.D. Hence if $f(x), g(x) \neq 0$ $f(x) g(x) \neq 0$ and $\operatorname{deg}(f(x) g(x))=\operatorname{dog}(g(x))+\operatorname{deg}(f(x))$
Hence $f(x) \in(\mathbb{Z} / 5 \mathbb{Z}[x])^{+} \Rightarrow f(x) \in \mathbb{Z} / 5 \mathbb{Z}^{*}$

$$
\Rightarrow f(x)=[1],[2],[3],[4]
$$

b) $([1]+[2] x)([1]+[2] x)=[1] \Rightarrow[1]+[2] x \in(\mathbb{C} / 42[x])$
2. Let R be an integral domain. Prove the transitivity property of \sim on $R \times\left(R \backslash\left\{0_{R}\right\}\right)$. Give an example to show that if R is not an integral domain then the transitivity property may not hold.
Solutions:

$$
\begin{aligned}
& (a, b) \sim(c, d) \Leftrightarrow a d-b c=o_{R} \\
& (c, d) \sim(e, 7) \Leftrightarrow c f-d_{R}=o_{R} \\
& \Rightarrow f(a d-b c)+b\left(c f-o_{R}\right)=d(a f-b e)=o_{R} \\
& d \neq o_{R} \Rightarrow a f-b_{e}=o_{R} \Rightarrow(a, b) \sim(e, f) \\
& R=\mathbb{Z} / 4 \mathbb{Z} \\
& (1,1) \sim(2,2) \\
& (2,2) \sim(1,3) \\
& (1,1) \nsim(1,3)
\end{aligned}
$$

3. Prove that \mathbb{C} is isomorphic (as a ring) to a quotient ring of $\mathbb{R}[x]$. Hint: Use the first isomorphism theorem Solutions:

Define

$$
\begin{aligned}
\phi: \quad \mathbb{R}[x] & \longrightarrow \mathbb{C} \\
f(x) & \longrightarrow f(i)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{C} \text { commutative } \Rightarrow \phi \text { a hamamappivinu } \\
& \operatorname{Ian} \phi=\mathbb{C} \Rightarrow \frac{\mathbb{R}[x]}{\operatorname{Ken} \phi} \cong \mathbb{C}
\end{aligned}
$$

